FtsH (HflB) is an ATP-dependent protease selectively acting on SecY and some other membrane proteins
- PMID: 8940120
- DOI: 10.1074/jbc.271.49.31196
FtsH (HflB) is an ATP-dependent protease selectively acting on SecY and some other membrane proteins
Abstract
The FtsH protein is a membrane-bound ATPase of Escherichia coli that was proposed to be involved in membrane protein assembly as well as degradation of some unstable proteins. SecY, a subunit of protein translocase, is FtsH dependently degraded in vivo when it fails to associate with its partner (the SecE protein). We constructed a series of mutants in which mutations were introduced into conserved residues in the two ATP binding consensus sequences or the zinc binding sequence of FtsH. We purified wild-type and mutant FtsH proteins by making use of a polyhistidine tag attached to their carboxyl termini. Complementation analysis and ATPase activity assays in vitro indicated that, of the two sets of ATP binding sequence motifs, the one located C-terminally (A1) is essential for ATPase activity and in vivo functioning of FtsH. Wild-type FtsH protein degraded purified SecY in an ATP hydrolysis-dependent manner in vitro. Mutant proteins without ATPase activity were inactive in proteolysis. A zinc binding motif mutant showed a decreased proteolytic activity. SecY and FtsH were cross-linkable with each other in the membrane, provided that FtsH had an ATPase-inactivating mutation. These results demonstrate that FtsH binds to and degrades SecY, its A1 motif and the zinc binding motif being important for the proteolytic activity. FtsH-dependent proteolysis was also demonstrated for SecY in crude membrane extracts, whereas a majority of other membrane proteins were not degraded, indicating that FtsH has high selectivity in protein degradation.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases