Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Dec 6;271(49):31196-201.
doi: 10.1074/jbc.271.49.31196.

FtsH (HflB) is an ATP-dependent protease selectively acting on SecY and some other membrane proteins

Affiliations
Free article

FtsH (HflB) is an ATP-dependent protease selectively acting on SecY and some other membrane proteins

Y Akiyama et al. J Biol Chem. .
Free article

Abstract

The FtsH protein is a membrane-bound ATPase of Escherichia coli that was proposed to be involved in membrane protein assembly as well as degradation of some unstable proteins. SecY, a subunit of protein translocase, is FtsH dependently degraded in vivo when it fails to associate with its partner (the SecE protein). We constructed a series of mutants in which mutations were introduced into conserved residues in the two ATP binding consensus sequences or the zinc binding sequence of FtsH. We purified wild-type and mutant FtsH proteins by making use of a polyhistidine tag attached to their carboxyl termini. Complementation analysis and ATPase activity assays in vitro indicated that, of the two sets of ATP binding sequence motifs, the one located C-terminally (A1) is essential for ATPase activity and in vivo functioning of FtsH. Wild-type FtsH protein degraded purified SecY in an ATP hydrolysis-dependent manner in vitro. Mutant proteins without ATPase activity were inactive in proteolysis. A zinc binding motif mutant showed a decreased proteolytic activity. SecY and FtsH were cross-linkable with each other in the membrane, provided that FtsH had an ATPase-inactivating mutation. These results demonstrate that FtsH binds to and degrades SecY, its A1 motif and the zinc binding motif being important for the proteolytic activity. FtsH-dependent proteolysis was also demonstrated for SecY in crude membrane extracts, whereas a majority of other membrane proteins were not degraded, indicating that FtsH has high selectivity in protein degradation.

PubMed Disclaimer

Publication types

LinkOut - more resources