Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Dec 13;271(50):32008-15.
doi: 10.1074/jbc.271.50.32008.

Synergy in protein engineering. Mutagenic manipulation of protein structure to simplify semisynthesis

Affiliations
Free article

Synergy in protein engineering. Mutagenic manipulation of protein structure to simplify semisynthesis

A C Woods et al. J Biol Chem. .
Free article

Abstract

Semisynthesis is a chemical technique of protein engineering that provides a valuable complement to directed mutagenesis. It is the method of choice when the structural modification requires, for example, a noncoded amino acid. The process involves specific and limited protein fragmentation, structural manipulation of the target sequence, and subsequent religation of fragments to give the mutant holoprotein. We suggested and demonstrated that mutagenesis and semisynthesis could be used synergistically to achieve protein engineering goals otherwise unobtainable, if mutagenesis was used to shuffle methionine residues in the yeast cytochrome c sequence (Wallace, C. J. A., Guillemette, J. G., Hibiya, Y., and Smith, M. (1991) J. Biol. Chem. 266, 21355-21357). These residues can not only be sites of specific cleavage by CNBr but also of spontaneous peptide bond synthesis between fragments in noncovalent complexes, which greatly facilitates the semisynthetic process. We have now used an informed "methionine scan" of the protein sequence to discover other useful sites and to characterize the factors that promote this extraordinary and convenient autocatalytic religation. Of eight sites canvassed, in a wide range of settings, five efficiently provoked peptide bond synthesis. The principal factor determining efficiency seems to be the hydropathy of the religation site. The mutants created have also provided some new insights on structure-function relationships in the cytochrome.

PubMed Disclaimer

Publication types

LinkOut - more resources