Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Oct;11(10):2162-4.
doi: 10.1093/oxfordjournals.humrep.a019069.

Effects of ultraviolet exposure and near infrared laser tweezers on human spermatozoa

Affiliations
Free article

Effects of ultraviolet exposure and near infrared laser tweezers on human spermatozoa

K König et al. Hum Reprod. 1996 Oct.
Free article

Abstract

Photostress has to be considered during optical micromanipulation of gametes. Ultraviolet light, including low-energy UVA (32-400 nm) radiation, as well as high-intensity near infrared (NIR) laser radiation may induce cell damage. A total number of 580 light-exposed sperm cells were studied in single-cell photostress experiments. Low-power (1.5 mW, 5.3 W/cm2) UVA exposure with 365 nm radiation of a standard mercury microscopy lamp to human spermatozoa resulted within 109 +/- 30 s in paralysis and within 310 +/- 110 s in cell death. Cytotoxic effects during cell manipulation with laser microbeams were found to be partly based on non-linear excitation phenomena, in particular two-photon absorption by endogenous cell chromophores. Two-photon absorption will be more intense in the case of pulsed laser microradiation, but occur also during micromanipulation with highly focused continuous wave (cw) microbeams used as laser tweezers ('optical traps'). In particular, short-wavelength NIR traps < 800 nm induce UVA-like biological effects (oxidative stress). For example, sperm trapping with 760 nm microbeams resulted in UVA-like autofluorescence modifications, paralysis within 35 +/- 20 s and cell death within 65 +/- 20 s. In contrast, laser microbeams at 800-1064 nm may act as relatively safe micromanipulation tools. In most optical traps multifrequency cw lasers are employed. Radiation of these lasers can magnify cytotoxic effects. Therefore, single-frequency laser operation should be preferred. In general, laser assisted cell micromanipulation requires a new understanding of microbeam-cell interaction, including aspects of non-linear optics.

PubMed Disclaimer

Similar articles

Cited by