Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Nov;271(5 Pt 1):C1774-9.
doi: 10.1152/ajpcell.1996.271.5.C1774.

Sodium-glucose cotransporters display sodium- and phlorizin-dependent water permeability

Affiliations

Sodium-glucose cotransporters display sodium- and phlorizin-dependent water permeability

J D Loike et al. Am J Physiol. 1996 Nov.

Abstract

Expression of Na(+)-glucose cotransporters of the SGLT-1 type by Xenopus laevis oocytes increased the osmotic water permeability (Pf) of oocytes by a factor of 1.9-2.8, in the presence and in the absence of 5 mM extracellular glucose. The Pf increase was correlated with the amount of SGLT-1 cRNA injected. In oocytes expressing SGLT-1, either addition of phlorizin to the medium or the replacement of Na+ by choline inhibited the uptake of methyl-alpha-D-glucopyranoside, a specific substrate for SGLT-1, and returned oocyte Pf to its level in uninjected oocytes. Phlorizin inhibited the SGLT-1-attributable increase in Pf with an inhibition constant (Ki) of 6.1 microM, a value analogous to the Ki for phlorizin inhibition of sugar uptake. However, neither the presence of phlorizin nor the absence of extracellular Na+ significantly affected the increase in Pf elicited in oocytes expressing GLUT-1, a facilitative glucose transporter. These findings suggest that SGLT-1 forms a pore that allows the transmembrane passage of water and that water and glucose traverse the protein through this pore. The finding that removal of extracellular Na+ abolishes the increase in Pf attributable to SGLT-1 suggests that extracellular Na+ is required to maintain patency of this transporter's water-permeable transmembrane pore.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources