Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Jun 15;308 ( Pt 3)(Pt 3):889-94.
doi: 10.1042/bj3080889.

The early stimulation of glycolysis by epidermal growth factor in isolated rat hepatocytes is secondary to the glycogenolytic effect

Affiliations

The early stimulation of glycolysis by epidermal growth factor in isolated rat hepatocytes is secondary to the glycogenolytic effect

I Quintana et al. Biochem J. .

Abstract

We have studied the relationship between the effect of epidermal growth factor (EGF) on glycogen metabolism and its effect on glycolysis, in rat hepatocyte suspensions. Although 10 nM glucagon or 10 microM adrenaline increased glycogen degradation by more than 120%, 10 nM EGF increased glycogenolysis by less than 20% in hepatocytes incubated in glucose-free medium. Both glucagon and adrenaline increased phosphorylase a activity by more than 130%; EGF increased this activity by about 30%. Under basal conditions, 65% of the glucosyl residues were released as free glucose and about 30% ended up as C3 molecules (lactate and pyruvate). Both glucagon and adrenaline decreased the proportion of glucosyl units that rendered glycolysis end-products (to 2% for glucagon and 6% for adrenaline) and increased the proportion that ended up as free glucose (to 94% and 88% of the glucosyl residues for glucagon and adrenaline respectively). EGF increased the production of both free glucose and lactate+pyruvate, but the proportion of glucosyl residues that ended up as free glucose or glycolysis end-products was unchanged. In glycogen-depleted hepatocytes incubated in the presence of 25 mM glucose, EGF affected neither glycogen deposition nor glycolysis. EGF increased cytosolic free Ca2+, and neomycin decreased both the Ca2+ signal and the glycogenolytic effect. In conclusion, our results indicate that the effect of EGF on glycolysis is secondary to the Ca(2+)-mediated stimulation of glycogenolysis in rat hepatocyte suspensions.

PubMed Disclaimer

References

    1. J Biol Chem. 1991 Jul 15;266(20):13342-9 - PubMed
    1. Eur J Biochem. 1991 May 8;197(3):805-13 - PubMed
    1. J Biol Chem. 1991 Nov 25;266(33):22451-8 - PubMed
    1. J Biol Chem. 1991 Dec 5;266(34):23392-8 - PubMed
    1. Biochem J. 1992 Apr 1;283 ( Pt 1):35-8 - PubMed

Publication types