Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Dec 20;271(51):32653-8.
doi: 10.1074/jbc.271.51.32653.

Skeletal muscle Na,K-ATPase alpha and beta subunit protein levels respond to hypokalemic challenge with isoform and muscle type specificity

Affiliations
Free article

Skeletal muscle Na,K-ATPase alpha and beta subunit protein levels respond to hypokalemic challenge with isoform and muscle type specificity

C B Thompson et al. J Biol Chem. .
Free article

Abstract

During potassium deprivation, skeletal muscle loses K+ to buffer the fall in extracellular K+. Decreased active K+ uptake via the sodium pump, Na,K-ATPase, contributes to the adjustment. Skeletal muscle expresses alpha1, alpha2, beta1, and beta2 isoforms of the Na, K-ATPase alphabeta heterodimer. This study was directed at testing the hypothesis that K+ loss from muscle during K+ deprivation is a function of decreased expression of specific isoforms expressed in a muscle type-specific pattern. Isoform abundance was measured in soleus, red and white gastrocnemius, extensor digitorum longus, and diaphragm by immunoblot. alpha2 expression was uniform across control muscles, whereas alpha1 and beta1 were twice as high in oxidative (soleus and diaphragm) as in fast glycolytic (white gastrocnemius) muscles, and beta2 expression was reciprocal: highest in white gastrocnemius and barely detectable in soleus and diaphragm. Following 10 days of potassium deprivation plasma K+ fell from 4.0 to 2.3 mM, and there were distinct responses in glycolytic versus oxidative muscles. In glycolytic white gastrocnemius alpha2 and beta2 fell 94 and 70%, respectively; in mixed red gastrocnemius and extensor digitorum longus both fell 60%, and beta1 fell 25%. In oxidative soleus and diaphragm alpha2 fell 55 and 30%, respectively, with only minor changes in beta1. Although decreases in alpha2 and beta2 expression are much greater in glycolytic than oxidative muscles during K+ deprivation, both types of muscle lose tissue K+ to the same extent, a 20% decrease, suggesting that multiple mechanisms are in place to regulate the release of skeletal muscle cell K+.

PubMed Disclaimer

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources