Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1997;22(1-2):287-305.
doi: 10.1016/s0891-5849(96)00327-9.

Oxidative damage and fibrogenesis

Affiliations
Review

Oxidative damage and fibrogenesis

G Poli et al. Free Radic Biol Med. 1997.

Abstract

Various chronic disease processes are characterized by progressive accumulation of connective tissue under-going fibrotic degeneration. Evidence of oxidative reactions is often associated with fibrogenesis occurring in liver, lung, arteries, and nervous system. Moreover, an increasing bulk of experimental and clinical data supports a contributory role of oxidative stress in the pathogenesis of this kind of disease. Indeed, many etiological agents of fibrogenesis stimulate free radical reactions either directly or through inflammatory stimuli. Free radicals, as well as products of their reaction with biomolecules, appear to modulate the activity of the two cellular types mainly involved in the process, namely phagocytes and extracellular matrix-producing cells. Lipid peroxidation and certain lipid peroxidation products induce genetic overexpression of fibrogenic cytokines, the key molecules in the pathomechanisms of fibrosis, as well as increased transcription and synthesis of collagen. Both these events can be downregulated, at least in experimental models, by the use of antioxidants. The effect of oxidative stress on cytokine gene expression appears to be an important mechanism by which it promotes connective tissue deposition.

PubMed Disclaimer

Publication types

LinkOut - more resources