5-HT released by mucosal stimuli initiates peristalsis by activating 5-HT4/5-HT1p receptors on sensory CGRP neurons
- PMID: 8967488
- DOI: 10.1152/ajpgi.1996.270.5.G778
5-HT released by mucosal stimuli initiates peristalsis by activating 5-HT4/5-HT1p receptors on sensory CGRP neurons
Abstract
The intestinal peristaltic reflex can be elicited by mucosal stimulation or circular muscle stretch. Muscle stretch activates extrinsic, whereas mucosal stimulation activates intrinsic calcitonin gene-related peptide (CGRP)-containing sensory neurons. The present study examined the role of 5-hydroxytryptamine (5-HT) in sensory transmission. A three-compartment preparation of rat colon was used that enables separate measurement of sensory transmitters and modulators. Mucosal stimuli (2-8 brush strokes) caused concurrent increase in 5-HT and CGRP release in proportion to the intensity of stimulation. Release of both 5-HT and CGRP occurred exclusively into the central compartment where the stimuli were applied. Exogenous 5-HT caused a concentration-dependent release of CGRP. Release of CGRP induced by exogenous 5-HT or mucosal stimulation was inhibited by selective 5-HT4 and 5-HT1p antagonists but was not affected by 5-HT1A, 5-HT2, and 5-HT3 antagonists. Ascending contraction and descending relaxation of circular muscle measured in the peripheral orad and caudad compartments, respectively, were also selectively inhibited by 5-HT4 and 5-HT1p antagonists added to the central but not peripheral compartments. In contrast, muscle stretch elicited CGRP but not 5-HT release; the ascending contraction and descending relaxation components of the peristaltic reflex induced by muscle stretch were not affected by 5-HT antagonists. We conclude that 5-HT released by mucosal stimulation initiates the peristaltic reflex by activating 5-HT4/5-HT1p receptors on sensory CGRP-containing neurons.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Research Materials
