Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1996 Dec 1;56(23):5334-8.

Asbestos causes stimulation of the extracellular signal-regulated kinase 1 mitogen-activated protein kinase cascade after phosphorylation of the epidermal growth factor receptor

Affiliations
  • PMID: 8968079
Comparative Study

Asbestos causes stimulation of the extracellular signal-regulated kinase 1 mitogen-activated protein kinase cascade after phosphorylation of the epidermal growth factor receptor

C L Zanella et al. Cancer Res. .

Abstract

Asbestos fibers are human carcinogens with undefined mechanisms of action. In studies here, we examined signal transduction events induced by asbestos in target cells of mesothelioma and potential cell surface origins for these cascades. Asbestos fibers, but not their nonfibrous analogues, induced protracted phosphorylation of the mitogen-activated protein (MAP) kinases and extracellular signal-regulated kinases (ERK) 1 and 2, and increased kinase activity of ERK2. ERK1 and ERK2 phosphorylation and activity were initiated by addition of exogenous epidermal growth factor (EGF) and transforming growth factor-alpha, but not by isoforms of platelet-derived growth factor or insulin-like growth factor-1 in mesothelial cells. MAP kinase activation by asbestos was attenuated by suramin, which inhibits growth factor receptor interactions, or tyrphostin AG 1478, a specific inhibitor of EGF receptor tyrosine kinase activity (IC50 = 3 nM). Moreover, asbestos caused autophosphorylation of the EGF receptor, an event triggering the ERK cascade. These studies are the first to establish that a MAP kinase signal transduction pathway is initiated after phosphorylation of a peptide growth factor receptor following exposure to asbestos fibers.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances