Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Oct-Dec;29(2-3):153-68.
doi: 10.1007/BF02814999.

Neurodegenerative mechanisms in Alzheimer disease. A role for oxidative damage in amyloid beta protein precursor-mediated cell death

Affiliations

Neurodegenerative mechanisms in Alzheimer disease. A role for oxidative damage in amyloid beta protein precursor-mediated cell death

B L Sopher et al. Mol Chem Neuropathol. 1996 Oct-Dec.

Abstract

We have established a stably transformed human neuroblastoma cell line (MC65) that conditionally expresses a C-terminal derivative of the amyloid beta protein precursor (beta PP) termed S beta C (a fusion protein composed of the amino-17 and carboxyl-99 residues of beta PP). Conditional expression of S beta C (mediated by the withdrawal of tetracycline from the culture medium) induces pronounced nuclear DNA fragmentation and cytotoxicity in this cell line. These effects are enhanced by hyperoxygen and suppressed by hypooxygen and antioxidants. This cell line is relatively insensitive to the extracellular application of amyloid beta 25-35, and coculture experiments suggest that this cytotoxicity is mediated by an intracellular process. These findings suggest that the overexpression of the C-terminal domain of beta PP can disrupt normal cellular processes in these cells in such a way as to induce a directed (deoxyribonuclease-mediated) mechanism of cell death. This process appears to be modulated and/or mediated by a reactive oxygen specie(s) (ROS). Consistent with a role for ROS in the process of S beta C-mediated toxicity, we have found that the MC65 cell line is hypersensitive to oxidative stress and that it is this sensitivity that appears (at least in part) to underlie its susceptibility to S beta C.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources