Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Nov;5(6):371-5.
doi: 10.3109/08037059609078077.

Role of the autonomic nervous system in the acute blood pressure elevation during repetitive hypoxic and hypercapnic breathing in rats

Affiliations
Free article

Role of the autonomic nervous system in the acute blood pressure elevation during repetitive hypoxic and hypercapnic breathing in rats

M Bakehe et al. Blood Press. 1996 Nov.
Free article

Abstract

Acute intermittent repetitive hypoxia simulating sleep apnoea syndrome is responsible for acute rises in blood pressure (BP). In the rat, the BP rises are enhanced by added hypercapnia. To investigate the role of the autonomic nervous system (ANS) in acute hypertension during repetitive hypoxia alone, FiO2 (inspiratory fractional concentration of oxygen) 2 to 5%, or combined with hypercapnia FiCO2 (inspiratory fractional concentration of carbon dioxide) 2 to 5%, we used autonomic blockade by atropine (1 mg kg-1) + propranolol (1 mg kg-1)-phentolamine (1 mg kg-1). Seven Wistar male rats were chronically instrumented with two aortic and venous catheters. Repetitive administration of N2 and N2 + CO2 for 10s followed by 20s compressed air was repeated for 4-5 min before (control) and after autonomic blockade. After autonomic blockade there was no significant difference in mean blood pressure (MBP) during severe hypoxia (SHO) (14.9 +/- 0.5 mmHg) compared to control (10.5 +/- 0.9 mmHg), while MBP was significantly decreased in severe hypoxia + hypercapnia (SHOHC) (14.1 +/- 0.4 mmHg) compared to control (26.8 +/- 0.3 mmHg) (p < 0.001). We conclude that the acute BP rise observed during hypoxic breathing is not due to the activation of ANS, but when hypercapnia is added to the hypoxic stimulus about half of pressor response is caused by ANS.

PubMed Disclaimer

Publication types

LinkOut - more resources