Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Jul;32(7):922-6.

[Mutator genes from Saccharomyces cerevisiae. Repair of artificial heteroduplexes in him and hsm mutants]

[Article in Russian]
  • PMID: 8974913

[Mutator genes from Saccharomyces cerevisiae. Repair of artificial heteroduplexes in him and hsm mutants]

[Article in Russian]
L M Gracheva et al. Genetika. 1996 Jul.

Abstract

During recent years, genes controlling mutation in higher eukaryotes have been found to be involved actively in carcinoma regeneration in cells. In this respect, studying the genetic control of mutagenesis becomes a key direction of research into mechanisms responsible for cancer generation. The results of studying interaction of mutations in the HSM3 and HSM6 genes, controlling spontaneous and induced mutagenesis in yeasts, and mutations impairing three known pathways of DNA damage repair in this microorganism, are described in this work. It was shown that mutation rev3 completely blocks UV-induced mutagenesis in all mutants studied. On the other hand, mutation rad2 synergistically interacts with mutations him1, hsm1, hsm3, hsm6, and hsm2, thus enhancing the frequency of UV-induced mutagenesis in double mutants multiple times. Mutations him2 and him3 manifested epistatic interaction with mutation rad2. With mutation rad54, the interaction was epistatic for mutations him1 and hsm2 and was additive for mutations hsm1, him2, and him3. On the basis of the data obtained, we developed a scheme for the appearance of mismatch bases in the process of repair of UV-induced DNA damage.

PubMed Disclaimer

Similar articles

Substances

LinkOut - more resources