Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Jan;80(1):82-7.
doi: 10.1161/01.res.80.1.82.

Intracellular Ca2+ increases the mitochondrial NADH concentration during elevated work in intact cardiac muscle

Affiliations
Free article

Intracellular Ca2+ increases the mitochondrial NADH concentration during elevated work in intact cardiac muscle

R Brandes et al. Circ Res. 1997 Jan.
Free article

Abstract

It is not clear how mitochondrial energy production is regulated in intact tissue when energy consumption suddenly changes. Whereas mitochondrial [NADH] ([NADH]m) may regulate cellular respiration rate and energetic state, it is not clear how [NADH]m itself is controlled during increased work in vivo. We have varied work and [Ca2+] in intact cardiac muscle while assessing [NADH]m using fluorescence spectroscopy. When increased work was accompanied by increasing average [Ca2+]c (by increasing [Ca2+]c or pacing frequency), [NADH]m initially fell and subsequently recovered to a new steady state level. Upon reduction of work, [NADH]m overshot and then returned to control levels. In contrast, when work was increased without increasing average [Ca2+]o (by increasing sarcomere length), [NADH]m fell similarly, but no recovery or overshoot was observed. This Ca(2+)-dependent recovery and overshoot may be attributed to Ca(2+)-dependent stimulation of mitochondrial dehydrogenases. We conclude that the immediate initial increase in respiration rate upon elevation of work is not activated by increased [NADH]m (since [NADH]m rapidly fell) or by [Ca2+]o (since work could also be increased at constant [Ca2+]c). However, during sustained high work, a Ca(2+)-dependent mechanism causes slow recovery of [NADH]m toward control values. This demonstrates a Ca(2+)-dependent feed-forward control mechanism of cellular energetics in cardiac muscle during increased work.

PubMed Disclaimer

Publication types

LinkOut - more resources