Design, synthesis, and evaluation of nonpeptidic inhibitors of human rhinovirus 3C protease
- PMID: 8978838
- DOI: 10.1021/jm960603e
Design, synthesis, and evaluation of nonpeptidic inhibitors of human rhinovirus 3C protease
Abstract
The design, synthesis, and biological evaluation of reversible, nonpeptidic inhibitors of human rhinovirus (HRV) 3C protease (3CP) are reported. A novel series of 2,3-dioxindoles (isatins) were designed that utilized a combination of protein structure-based drug design, molecular modeling, and structure-activity relationship (SAR). The C-2 carbonyl of isatin was envisioned to react in the active site of HRV 3CP with the cysteine responsible for catalytic proteolysis, thus forming a stabilized transition state mimic. Molecular-modeling experiments using the apo crystal structure of human rhinovirus-serotype 14 (HRV-14) 3CP and a peptide substrate model allowed us to design recognition features into the P1 and P2 subsites, respectively, from the 5- and 1-positions of isatin. Attempts to optimize recognition properties in the P1 subsite using SAR at the 5-position were performed. In addition, a series of ab initio calculations were carried out on several 5-substituted isatins to investigate the stability of sulfide adducts at C-3. The inhibitors were prepared by general synthetic methods, starting with commercially available 5-substituted isatins in nearly every case. All compounds were tested for inhibition of purified HRV-14 3CP. Compounds 8, 14, and 19 were found to have excellent selectivity for HRV-14 3CP compared to other proteolytic enzymes, including chymotrypsin and cathepsin B. Selected compounds were assayed for antiviral activity against HRV-14-infected HI-HeLa cells. A 2.8 A cocrystal structure of derivative 19 covalently bound to human rhinovirus-serotype 2 (HRV-2) 3CP was solved and revealed that the isatin was situated in essentially the same conformation as modeled.
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Chemical Information
Miscellaneous