Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Jan;56(1):145-9.
doi: 10.1016/S0091-3057(96)00171-2.

The non-competitive NMDA antagonist MK-801 increases food intake in rats

Affiliations

The non-competitive NMDA antagonist MK-801 increases food intake in rats

G A Burns et al. Pharmacol Biochem Behav. 1997 Jan.

Abstract

A role for excitatory amino acids in the control of feeding behavior has not been extensively investigated. Nevertheless, there is direct and circumstantial evidence to indicate that some circuits involved with feeding behavior include glutamatergic elements. To test the hypothesis that endogenous glutamate participates in the control of food intake, we performed experiments to determine whether MK-801, a non-competitive N-methyl-D-aspartate (NMDA) ion channel antagonist, is capable of altering intake of liquid and solid foods in hungry or satiated rats. Following a 16 h fast, intake of 15% sucrose was significantly enhanced by systemic treatment with MK-801. Water intake was not altered by the NMDA antagonist. Rats did not ingest more rat chow after MK-801, unless they had been fasted. When a more palatable food (cookies) was offered, MK-801 did increase intake. Thus MK-801 enhanced food intake only when feeding was initiated by food-deprivation or increased palatability. In conclusion, our results support the hypothesis that endogenous glutamate plays a role in the control of food intake. Blockade of NMDA receptor function by MK-801 may diminish or delay satiety signals, rather than initiate feeding behavior per se.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources