Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Nov;120(5):1007-19.
doi: 10.1093/oxfordjournals.jbchem.a021493.

Galectin-1 from bovine spleen: biochemical characterization, carbohydrate specificity and tissue-specific isoform profiles

Affiliations
Free article

Galectin-1 from bovine spleen: biochemical characterization, carbohydrate specificity and tissue-specific isoform profiles

H Ahmed et al. J Biochem. 1996 Nov.
Free article

Abstract

Selected biochemical properties, including the charge heterodispersity profile and carbohydrate specificity, of bovine galectin-1 were determined in detail. The lectin was purified through an improved purification protocol that yielded 35-40 mg/kg of wet tissue with a specific activity of 1.7-2 x 10(4) mg-1.ml. The galectin is a homodimer of approximately 14.5 kDa subunits with E(280)mg/ml of 0.65 ml.mg-1.cm-1. When stored in the presence of its carbohydrate ligand, the lectin's binding activity remained stable in a non-reducing environment even at room temperature. The optimal pH for binding to the ligand was 6.5-8.0. The overall carbohydrate specificity of the bovine galectin-1 isolated from spleen is similar to that of the galectin isolated from heart and to other mammalian galectins that exhibit "conserved" (Type I) carbohydrate recognition domains (CRDs) [Ahmed, H. and Vasta, G.R. (1994) Glycobiology 4, 545-549], but differs from those from Xenopus laevis and rat intestine domain I. The fluorescence of 4-methylumbelliferyl alpha-D-galactopyranoside was quenched on binding to bovine spleen galectin-1. Scatchard plots of data obtained at 5, 15, and 30 degrees C showed that the galectin has two sugar exothermic binding sites with association constants of 3.4 x 10(5), 1.0 x 10(5), and 0.3 x 10(5), respectively. Chemical modification studies indicated that histidine, tryptophan, carboxylic acid, and arginine, but not lysine or tyrosine, are involved in the binding to the carbohydrate ligand. On isoelectric focusing, the spleen galectin-1 appeared as six isoforms ranging from pI4.56-4.88 with main components at pI 4.63 (34.0%), 4.73 (42.6%), and 4.88 (16.6%). The galectin-1 isolated from heart yielded a quali- and quantitatively different profile with four isoforms ranging from pI 4.53-4.73, those with pIs of 4.56, 4.63, and 4.73 being common to the spleen homolog. Edman degradation of selected peptides purified from the spleen galectin-1 digest revealed amino acid sequences identical to those obtained for the heart galectin-1. This suggests that although point mutations in the subunit primary structure may not be the likely source of isolectins, as observed for X. laevis, tissue-specific co- or post-translational modifications may be the possible cause of the differences in the galectin isoform profile between bovine spleen and heart.

PubMed Disclaimer

Similar articles

Cited by

Publication types