Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Dec;26(1):93-103.
doi: 10.1016/s0920-1211(96)00045-9.

The model of pentylenetetrazol-induced status epilepticus in the immature rat: short- and long-term effects

Affiliations

The model of pentylenetetrazol-induced status epilepticus in the immature rat: short- and long-term effects

A Nehlig et al. Epilepsy Res. 1996 Dec.

Abstract

In order to assess acute, short and long-term effects of seizures in the immature rat brain, we studied the metabolic, circulatory and histopathological changes induced by pentylenetetrazol (PTZ) given at postnatal day 10 (P10) or 21 (P21). Seizures were induced by repetitive subconvulsive injections of PTZ given as a first dose of 40 mg/kg followed 10 min later by 20 mg/kg. Thereafter, rats received every 10 min additional injections of PTZ 10 mg/kg until the onset of status epilepticus. Local cerebral metabolic rates for glucose (LCMRglc) were measured both during the seizures in P10 and P21 rats and in the young adult animal at P60 by means of the quantitative 2-deoxyglucose technique. Rates of local cerebral blood flow (LCBF) were determined during the seizures by the iodoantipyrine technique. Short-term histological changes were assessed by acid fuchsin and hematoxylin-eosin staining and by HSP72 immunohistochemistry. At P10, LCMRglcs uniformly increased (38-400%) over control values during seizures. At P21, metabolic increases (39-181%) occurred only in 20% of the structures while LCMRglcs decreased in most cortical, hippocampal and sensory areas as well as in mammillary body, discrete thalamic nuclei and white matter areas. At P10, LCBF rose (32-184%) in all brain structures whereas, at P21, LCBF decreased in cortical, hippocampal and sensory regions and increased in most other areas. At P60, in animals having seized at either age, significant long-term decreases in LCMRglcs were recorded in hippocampus, auditory and piriform cortex, medial geniculate body and mammillary body. In P60 animals exposed to PTZ at P10, LCMRglcs were also decreased in 3 other sensory areas. In P60 animals exposed to seizures at P21, LCMRglcs were additionally decreased in sensory regions, cortices, thalamic and hypothalamic regions. Neuronal cells were transiently stained with acid fuchsin, with a peak occurring at 24 h after the seizures. The stain was visible in all regions of cerebral cortex and hippocampus and in some thalamic and hypothalamic nuclei. This transient staining was not accompanied by cell degeneration as assessed by hematoxylin-eosin histology. No HSP72 expression could be detected 24 h after the seizures, neither at P10 nor at P21. The present study shows that the immature rat neurons undergo altered metabolic rates and local circulatory decreases in the acute phase, a change in the affinity of acid fuchsin as a short-term effect and long-term metabolic decreases. All these changes are located in the same regions, i.e., cerebral cortex, hippocampus, sensory regions as well as scattered thalamic and hypothalamic nuclei. Thus, short- and long-term metabolic changes induced by seizures can be used as an index of cell stress in the immature rat brain. Since all these changes occur in the absence of visible neuronal death, they might be related to changes in the final arborization and synaptic organization of the developing brain.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources