Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Dec;5(6):653-66.
doi: 10.1016/s1074-7613(00)80278-2.

A novel role for the beta 2 integrin CD11b/CD18 in neutrophil apoptosis: a homeostatic mechanism in inflammation

Affiliations
Free article

A novel role for the beta 2 integrin CD11b/CD18 in neutrophil apoptosis: a homeostatic mechanism in inflammation

A Coxon et al. Immunity. 1996 Dec.
Free article

Abstract

In mice selectively deficient in CD11b/CD18, a beta 2 integrin, chemoattractant-induced leukocyte adhesion to microvascular endothelium in vivo was reduced. Paradoxically, thioglycollate-induced neutrophil accumulation in the peritoneal cavity was increased and was associated with a significant delay in apoptosis of extravasated cells. The extravasated cells had a near absence of neutrophil phagocytosis and a reduction in oxygen free radical generation, which may contribute to the observed defect in apoptosis. This is supported by our in vitro studies, in which phagocytosis of opsonized particles by human neutrophils rapidly induced apoptosis that could be blocked with CD11b/ CD18 antibodies. Reactive oxygen species are the intracellular link in this process: phagocytosis-induced apoptosis was blocked both in neutrophils treated with the flavoprotein inhibitor diphenylene iodonium and in neutrophils from patients with chronic granulomatous disease, which lack NADPH oxidase. Thus, CD11b/CD18 plays a novel and unsuspected homeostatic role in inflammation by accelerating the programmed elimination of extravasated neutrophils.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms