Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1996:60:83-8.
doi: 10.1111/j.1600-0609.1996.tb01651.x.

Reactive metabolites and agranulocytosis

Affiliations
Review

Reactive metabolites and agranulocytosis

J P Uetrecht. Eur J Haematol Suppl. 1996.

Abstract

Central to most hypotheses of the mechanism of idiosyncratic drug-induced blood dyscrasias is the involvement of reactive metabolites. In view of the reactive nature of the majority of such metabolites, it is likely that they are formed by, or in close proximity to the blood cells affected. The major oxidative system of neutrophils generates hypochlorous acid. We have demonstrated that the drugs associated with the highest incidence of agranulocytosis are oxidized to reactive metabolites by hypochlorous acid and/or activated neutrophils. There are many mechanisms by which such reactive metabolites could induce agranulocytosis. In the case of aminopyrine-induced agranulocytosis, most cases appear to involve drug-dependent anti-neutrophil antibodies, and these are likely to be induced by cell membrane antigens modified by the reactive metabolite of aminopyrine. The target of agranulocytosis associated with many other drugs is usually neutrophil precursors and may involve cytotoxicity or a cell-mediated immune reaction induced by a reactive metabolite. In the case of aplastic anaemia, there is evidence in some cases for involvement of cytotoxic T cells, which could either be induced by metabolites generated by neutrophils, or more likely, by reactive metabolites generated by stem cells.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources