Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Jan 1;57(1):130-5.

Raf-1/bcl-2 phosphorylation: a step from microtubule damage to cell death

Affiliations
  • PMID: 8988053

Raf-1/bcl-2 phosphorylation: a step from microtubule damage to cell death

M V Blagosklonny et al. Cancer Res. .

Abstract

Recent studies have shown that paclitaxel leads to activation of Raf-1 kinase and have suggested that this activation is essential for bcl-2 phosphorylation and apoptosis. In the present study, we demonstrate that, in addition to paclitaxel, other agents that interact with tubulin and microtubules also induce Raf-1/bcl-2 phosphorylation, whereas DNA-damaging drugs, antimetabolites, and alkylating agents do not. Activation of Raf-1 kinase by paclitaxel is linked to tubulin polymerization; the effect is blunted in paclitaxel-resistant cells, the tubulin of which does not polymerize following the addition of paclitaxel. In contrast, vincristine and vinblastine, drugs to which the paclitaxel-resistant cells retain sensitivity were able to bring about Raf-1 phosphorylation. The requirement for disruption of microtubules in this signaling cascade was strengthened further using paclitaxel analogues by demonstrating a correlation between tubulin polymerization, Raf-1/bcl-2 phosphorylation, and cytotoxicity. Inhibition of RNA or protein synthesis prevents Raf-1 activation and bcl-2 phosphorylation, suggesting that an intermediate protein(s) acts upstream of Raf-1 in this microtubule damage-activating pathway. A model is proposed that envisions a pathway of Raf-1 activation and bcl-2 phosphorylation following disruption of microtubular architecture, serving a role similar to p53 induction following DNA damage.

PubMed Disclaimer

MeSH terms

LinkOut - more resources