Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1995 Oct;74(4):1782-6.
doi: 10.1152/jn.1995.74.4.1782.

Burst responses in thalamic relay cells of the awake behaving cat

Affiliations

Burst responses in thalamic relay cells of the awake behaving cat

W Guido et al. J Neurophysiol. 1995 Oct.

Abstract

1. Relay cells of the dorsal lateral geniculate nucleus (LGN) respond in one of two modes: tonic or burst. The purpose of this study was to determine whether, and under what conditions, burst responses occur in LGN cells of an awake, behaving animal. 2. We recorded the extracellular responses of cells located in the A layers of LGN in two cats trained to perform a simple fixation task. In our paradigm, head position was fixed and gaze monitored with the use of the scleral search coil technique. They were trained to fixate on a small target light while we probed the receptive field of an isolated LGN cell with drifting gratings. 3. Many LGN cells (37/48; 77%) recorded in the awake cat showed some form of burst firing. However, the degree of burstiness a given cell displayed was relatively low. The probability of recording a burst response during any second within the fixation task was 0.09. This reflects the fact that during wakefulness, LGN cells are generally in a state of relative depolarization and the low-threshold Ca2+ conductance underlying burst firing is inactivated. 4. The majority of bursts occurred (262/377; 71%) during visual stimulation. These comprised the initial response to the grating and were confined to the early phase of fixation. As the cat continued to hold fixation and as subsequent cycles of the grating passed through the cell's receptive field, the response shifted from a burst to a tonic firing pattern. Some bursts (67/377, 18%) were related to eye movements. All of these were postsaccadic, and most occurred > 150 ms from the onset of the eye movement. Finally, some bursts were neither visually driven nor related to eye movements. However, these spontaneous bursts were infrequent (41/377; 11%) and never rhythmic. 5. Burst firing in LGN cells has a dual purpose. During quiescent states such as slow-wave sleep, they support the decoupling of retinal signals from LGN. During the waking state, bursts can facilitate signal transmission during target acquisition and early phases of fixation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources