Positioning hydrogen atoms by optimizing hydrogen-bond networks in protein structures
- PMID: 8990493
- DOI: 10.1002/(SICI)1097-0134(199612)26:4<363::AID-PROT1>3.0.CO;2-D
Positioning hydrogen atoms by optimizing hydrogen-bond networks in protein structures
Abstract
A method is presented that positions polar hydrogen atoms in protein structures by optimizing the total hydrogen bond energy. For this goal, an empirical hydrogen bond force field was derived from small molecule crystal structures. Bifurcated hydrogen bonds are taken into account. The procedure also predicts ionization states of His, Asp, and Glu residues. During optimization, side-chain conformations of His, Gln, and Asn residues are allowed to change their last chi angle by 180 degrees to compensate for crystallographic misassignments. Crystal structure symmetry is taken into account where appropriate. The results can have significant implications for molecular dynamics simulations, protein engineering, and docking studies. The largest impact, however, is in protein structure verification: over 85% of protein structures tested can be improved by using our procedure.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
