A language learning model for finite parameter spaces
- PMID: 8990971
- DOI: 10.1016/s0010-0277(96)00718-4
A language learning model for finite parameter spaces
Abstract
This paper shows how to formally characterize language learning in a finite parameter space, for instance, in the principles-and-parameters approach to language, as a Markov structure. New language learning results follow directly; we can explicitly calculate how many positive examples on average ("sample complexity") it will take for a learner to correctly identify a target language with high probability. We show how sample complexity varies with input distributions and learning regimes. In particular we find that the average time to converge under reasonable language input distributions for a simple three-parameter system first described by Gibson and Wexler (1994) is psychologically plausible, in the range of 100-150 positive examples. We further find that a simple random step algorithm-that is, simply jumping from one language hypothesis to another rather than changing one parameter at a time-works faster and always converges to the right target language, in contrast to the single-step, local parameter setting method advocated in some recent work.
Comment in
-
Advances in the computational study of language acquisition.Cognition. 1996 Oct-Nov;61(1-2):1-38. doi: 10.1016/s0010-0277(96)00779-2. Cognition. 1996. PMID: 8990967 Review.
Similar articles
-
Does error-free use of French negation constitute evidence for Very Early Parameter Setting?J Child Lang. 2002 Feb;29(1):71-86. doi: 10.1017/s0305000901004901. J Child Lang. 2002. PMID: 11968887
-
Bootstrapping language acquisition.Cognition. 2017 Jul;164:116-143. doi: 10.1016/j.cognition.2017.02.009. Epub 2017 Apr 13. Cognition. 2017. PMID: 28412593
-
Structural complexity and the time course of grammatical development.Cognition. 1998 Jun;66(3):249-301. doi: 10.1016/s0010-0277(98)00024-9. Cognition. 1998. PMID: 9689771
-
Early object labels: the case for a developmental lexical principles framework.J Child Lang. 1994 Feb;21(1):125-55. doi: 10.1017/s0305000900008692. J Child Lang. 1994. PMID: 8006089 Review.
-
Argument structure and the child's contribution to language learning.Trends Cogn Sci. 2004 Apr;8(4):157-61. doi: 10.1016/j.tics.2004.02.005. Trends Cogn Sci. 2004. PMID: 15050511 Review.
Cited by
-
Language acquisition with communication between learners.J R Soc Interface. 2018 Mar;15(140):20180073. doi: 10.1098/rsif.2018.0073. J R Soc Interface. 2018. PMID: 29593089 Free PMC article.
-
One model for the learning of language.Proc Natl Acad Sci U S A. 2022 Feb 1;119(5):e2021865119. doi: 10.1073/pnas.2021865119. Proc Natl Acad Sci U S A. 2022. PMID: 35074868 Free PMC article.
-
Chaos and language.Proc Biol Sci. 2004 Apr 7;271(1540):701-4. doi: 10.1098/rspb.2003.2643. Proc Biol Sci. 2004. PMID: 15209103 Free PMC article.
-
Evolutionary biology of language.Philos Trans R Soc Lond B Biol Sci. 2000 Nov 29;355(1403):1615-22. doi: 10.1098/rstb.2000.0723. Philos Trans R Soc Lond B Biol Sci. 2000. PMID: 11127907 Free PMC article. Review.
-
Entangled parametric hierarchies: problems for an overspecified universal grammar.PLoS One. 2013 Sep 3;8(9):e72357. doi: 10.1371/journal.pone.0072357. eCollection 2013. PLoS One. 2013. PMID: 24019867 Free PMC article.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources