Influence of acidic residues and the kink in the active-site helix on the properties of the disulfide oxidoreductase DsbA
- PMID: 8995246
- DOI: 10.1074/jbc.272.1.189
Influence of acidic residues and the kink in the active-site helix on the properties of the disulfide oxidoreductase DsbA
Abstract
The catalytic disulfide bond Cys30-Cys33 of the disulfide oxidoreductase DsbA from Escherichia coli is located at the amino terminus of an alpha-helix, which has a kink caused by insertion of a tripeptide (residues 38-40). The oxidative force of DsbA (E'O = -125 mV) mainly results from the low pKa of 3.4 of its Cys30 thiol. To investigate the role of the kink and the electrostatic contribution of Glu37 and Glu38 to the redox properties of DsbA, we have characterized a series of DsbA variants (delta38-40, delta38-40/H41P, E37Q, E38Q, and E37Q/E38Q). In contrast to theoretical predictions, the redox potentials of the variants are almost unchanged, and the pKa values of Cys30 do not differ by more than 0.5 units from that of DsbA wild type. All variants show the same in vivo activity and dependence of redox potential on ionic strength as the wild type. The mutations have no influence on the polypeptide specificity of the protein, which is independent of the isoelectric point of the polypeptide substrate and most pronounced at acidic pH. We conclude that neither the kink in the active-site helix nor Glu37 and Glu38 are critical for the physical properties of DsbA.
Similar articles
-
Elimination of all charged residues in the vicinity of the active-site helix of the disulfide oxidoreductase DsbA. Influence of electrostatic interactions on stability and redox properties.J Biol Chem. 1997 Aug 29;272(35):21692-9. doi: 10.1074/jbc.272.35.21692. J Biol Chem. 1997. PMID: 9268296
-
Conversion of a catalytic into a structural disulfide bond by circular permutation.Biochemistry. 1998 Dec 15;37(50):17590-7. doi: 10.1021/bi981888v. Biochemistry. 1998. PMID: 9860875
-
Randomization of the entire active-site helix alpha 1 of the thiol-disulfide oxidoreductase DsbA from Escherichia coli.J Biol Chem. 2002 Nov 8;277(45):43050-7. doi: 10.1074/jbc.M207638200. Epub 2002 Aug 21. J Biol Chem. 2002. PMID: 12193604
-
[Study on disulfide bond formation protein A in Escherichia coli].Sheng Wu Gong Cheng Xue Bao. 2007 Jan;23(1):7-15. Sheng Wu Gong Cheng Xue Bao. 2007. PMID: 17366881 Review. Chinese.
-
Enzymatic catalysis of disulfide formation.Protein Expr Purif. 1994 Feb;5(1):1-13. doi: 10.1006/prep.1994.1001. Protein Expr Purif. 1994. PMID: 7909462 Review.
Cited by
-
Differences between the electronic environments of reduced and oxidized Escherichia coli DsbA inferred from heteronuclear magnetic resonance spectroscopy.Protein Sci. 1998 Oct;7(10):2065-80. doi: 10.1002/pro.5560071003. Protein Sci. 1998. PMID: 9792093 Free PMC article.
-
The basics of thiols and cysteines in redox biology and chemistry.Free Radic Biol Med. 2015 Mar;80:148-57. doi: 10.1016/j.freeradbiomed.2014.11.013. Epub 2014 Nov 27. Free Radic Biol Med. 2015. PMID: 25433365 Free PMC article. Review.
-
On the role of the cis-proline residue in the active site of DsbA.Protein Sci. 1999 Jan;8(1):96-105. doi: 10.1110/ps.8.1.96. Protein Sci. 1999. PMID: 10210188 Free PMC article.
-
An extracellular disulfide bond forming protein (DsbF) from Mycobacterium tuberculosis: structural, biochemical, and gene expression analysis.J Mol Biol. 2010 Mar 12;396(5):1211-26. doi: 10.1016/j.jmb.2009.12.060. Epub 2010 Jan 11. J Mol Biol. 2010. PMID: 20060836 Free PMC article.
-
Protein S-Nitrosylation: A Chemical Modification with Ubiquitous Biological Activities.Protein J. 2024 Aug;43(4):639-655. doi: 10.1007/s10930-024-10223-y. Epub 2024 Jul 28. Protein J. 2024. PMID: 39068633 Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Molecular Biology Databases