Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Jan 3;272(1):196-202.
doi: 10.1074/jbc.272.1.196.

CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone

Affiliations
Free article

CspA, the major cold-shock protein of Escherichia coli, is an RNA chaperone

W Jiang et al. J Biol Chem. .
Free article

Abstract

CspA, the major cold-shock protein of Escherichia coli, is dramatically induced during the cold-shock response. The amino acid sequence of CspA shows 43% identity to the "cold-shock domain" of the eukaryotic Y-box protein family, which interacts with RNA and DNA to regulate their functions. Here, we demonstrate that CspA binds to RNA as a chaperone. First, CspA cooperatively binds to heat-denatured single-stranded RNA if it is larger than 74 bases, causing a supershift in gel electrophoresis. A minimal concentration of CspA at 2.7 x 10(-5) M is absolutely required for this cooperative binding, which is sufficiently lower than the estimated cellular concentration of CspA (10(-4) M) in cold-shocked cells. No specific RNA sequences for CspA binding were identified, indicating that it has a broad sequence specificity for its binding. When the 142-base 5'-untranslated region of the cspA mRNA was used as a substrate for ribonucleases A and T1, the addition of CspA significantly stimulated RNA hydrolysis by preventing the formation of RNase-resistant bands due to stable secondary structures in the 5'-untranslated region. These results indicate that binding of CspA to RNA destabilizes RNA secondary structures to make them susceptible to ribonucleases. We propose that CspA functions as an RNA chaperone to prevent the formation of secondary structures in RNA molecules at low temperature. Such a function may be crucial for efficient translation of mRNAs at low temperatures and may also have an effect on transcription.

PubMed Disclaimer

Publication types

LinkOut - more resources