Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Jan 3;272(1):563-71.
doi: 10.1074/jbc.272.1.563.

Differences between plant and animal Myb domains are fundamental for DNA binding activity, and chimeric Myb domains have novel DNA binding specificities

Affiliations
Free article

Differences between plant and animal Myb domains are fundamental for DNA binding activity, and chimeric Myb domains have novel DNA binding specificities

C E Williams et al. J Biol Chem. .
Free article

Abstract

Several Myb domain proteins have been identified in plants, in which they play important regulatory roles in specific cellular processes. Plant and animal Myb domains have significant differences, but how these differences are important for function is not yet understood. The P gene encodes a Myb domain protein that activates a subset of flavonoid biosynthetic genes in maize floral organs. P and v-Myb bind different DNA sequences in vitro. Here we show that the Myb domain is solely responsible for the sequence-specific DNA binding activity of P, which binds DNA only in the reduced state. Differences in the DNA binding domains of v-Myb and P, which are conserved among animal and plant Myb domains, are fundamental for the high affinity DNA binding activity of these proteins to the corresponding binding sites but are not sufficient for the distinct DNA binding specificities of P and v-Myb. We conclude that significant structural differences distinguish plant from animal Myb domains. A chimeric Myb domain with a novel DNA binding specificity was created by combining Myb repeats of P and v-Myb. This approach could be used to artificially create novel Myb domains and to target transcription factors to genes containing specific promoters or to modify Myb-mediated interactions with other cellular factors.

PubMed Disclaimer

Publication types

LinkOut - more resources