Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Dec;271(6 Pt 1):C2053-61.
doi: 10.1152/ajpcell.1996.271.6.C2053.

Oxygen dependence of respiration in coupled and uncoupled endothelial cells

Affiliations

Oxygen dependence of respiration in coupled and uncoupled endothelial cells

R Steinlechner-Maran et al. Am J Physiol. 1996 Dec.

Abstract

We studied the oxygen dependence of respiration in cultured human umbilical vein endothelial cells by use of high-resolution respirometry. The rate of oxygen consumption varied from 30 to 50 pmol O2.s-1.(10(6) cells)-1 over a sixfold range of cell densities. Respiration was stimulated up to 3.5-fold by uncoupling with carbonyl cyanide p-trifluoromethoxyphenylhydrazone or 2,4-dinitrophenol, and the PO2 at half-maximal respiration (P50) increased from 0.05 to 0.12 kPa (0.3 to 0.9 Torr) with respiratory rate. P50 decreased to a minimum of 0.02 kPa when uncoupled cells were inhibited to control levels. Differences in cell size explained a variation of approximately 0.015 kPa in P50 at similar respiratory rates per cell. Oxygen diffusion to mitochondria contributed maximally 30% to the regulation of P50 in coupled cells, as deduced from the shallow slope of the flux dependence of P50 in uncoupled-inhibited cells compared with the slope in coupled cells. Therefore 70% of the flux dependence of P50 in coupled cells was caused by changes in metabolic state, which correlated with respiratory rate.

PubMed Disclaimer

Publication types

LinkOut - more resources