Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1996 Dec 20;264(5):1072-84.
doi: 10.1006/jmbi.1996.0697.

The crystal structure of a hyperthermophilic archaeal TATA-box binding protein

Affiliations
Free article
Comparative Study

The crystal structure of a hyperthermophilic archaeal TATA-box binding protein

B S DeDecker et al. J Mol Biol. .
Free article

Abstract

This study analyzes the three-dimensional structure of the TATA-box binding protein (TBP) from the hyperthermophilic archaea Pyrococcus woesei. The crystal structure of P. woesei TBP (PwTBP) was solved at 2.2 A by X-ray diffraction and as expected from sequence homology (36% to 41% identical to eukaryotic TBPs) its overall structure is very similar to eukaryotic TBPs. The thermal unfolding transition temperature of this protein was measured by differential scanning calorimetry to be 101 degrees C, which is more than 40 degrees C higher than that of yeast TBP. Preliminary titration calorimetry data show that the affinity of PwTBP for its DNA target, unlike its eukaryotic counterparts, is enhanced by increasing the temperature and salt concentration. The structure reveals possible explanations for this thermostability and these unusual DNA binding properties. The crystal structure of this hyperthermostable protein was compared to its mesophilic homologs and analyzed for differences in the native structure that may contribute to thermostability. Differences found were: (1) a disulfide bond not found in mesophilic counterparts; (2) an increased number of surface electrostatic interactions; (3) more compact protein packing. The presumed DNA binding surface of PwTBP, like its eukaryotic counterparts, is hydrophobic but the electrostatic profile surrounding the protein is relatively neutral compared to the asymmetric positive potential that surrounds eukaryotic TBPs. The total reliance on a hydrophobic interface with DNA may explain the enhanced affinity of PwTBP for its DNA promoter at higher temperatures and increased salt concentration.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources