Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1996 May;12(3):186-93.
doi: 10.1016/s0109-5641(96)80020-0.

In vitro models of biocompatibility: a review

Affiliations
Review

In vitro models of biocompatibility: a review

C T Hanks et al. Dent Mater. 1996 May.

Abstract

The objectives of this paper were to define in vitro biocompatibility of materials, to discuss some of the issues concerning why conclusions from tissue culture are sometimes different from in vivo biocompatibility, to give highlights of the sequence of the development of these in vitro assays from the early 1950s to their present state of development, and to discuss possible future trends for in vitro testing. In vitro biocompatibility tests were developed to simulate and predict biological reactions to materials when placed into or on tissues in the body. Traditional assays have measured cytotoxicity by means of either an end-stage event, (i.e., permeability of cytoplasmic membranes of dead and dying cells, or some metabolic parameter such as cell division or an enzymatic reaction). In vitro assays for initiation of inflammatory and immune reactions to materials have also begun to appear in the literature. More recently, the concept of dentin barrier tests has been introduced for dental restorative materials. Four models which measure both permeability and biological effects of materials are compared and discussed. Future efforts may be directed toward development of materials which will allow or promote function and differentiation of tissues associated with materials. New analytical procedures and understanding of optimal characteristics of materials should improve our ability to develop more biocompatible materials. Both molecular biology techniques, and altered design of material surfaces may make the materials either more or less reactive to the biological milieu. These trends suggest a greater future role of the biological sciences in the development of biomaterials.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources