Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Jan 14;36(2):442-51.
doi: 10.1021/bi960644c.

Carboxy-terminal regions of the sarcoplasmic/endoplasmic reticulum Ca(2+)- and the Na+/K(+)-ATPases control their K+ sensitivity

Affiliations

Carboxy-terminal regions of the sarcoplasmic/endoplasmic reticulum Ca(2+)- and the Na+/K(+)-ATPases control their K+ sensitivity

T Ishii et al. Biochemistry. .

Abstract

The Na+,K(+)-ATPase and the sarcoplasmic/endoplasmic reticulum Ca(2+)-(SERCA-) ATPase belong to a family of P-type ATPases that undergo a cycle of conformational changes between the phosphorylated and dephosphorylated stages in an ion-specific manner. The ouabain-inhibitable Na+,K(+)-ATPase activity requires Na+ and K+. On the other hand, the Ca(2+)-dependent and thapsigargin-inhibitable activity of the SERCA-ATPase does not depend upon Na+ and K+ for its basal activity. However, the SERCA-ATPase and Ca(2+)-transport activities can be further activated either by K+ in a two-step fashion with high (ED50 approximately 20 mM) and low affinity (ED50 approximately 70 mM) or by Na+ in a one-step fashion with an ED50 value of approximately 50 mM. A chimera, in which the carboxy-terminal region (Leu861-COOH) of the Na+,K(+)-ATPase alpha 1 subunit replaced the corresponding region (Ser830-COOH) of the SERCA1-ATPase, lacked the low-affinity K+ activation of the SERCA-ATPase but displayed a higher-affinity (ED50 < 10 mM) activation by K+, similar to that of the Na+,K(+)-ATPase, whereas activation by Na+ was not affected. The replacement of the large cytosolic loop (Gly354-Lys712) and the amino-terminal regions (Met1-Asp162) of the SERCA1-ATPase with the corresponding portions of the Na+,K(+)-ATPase alpha 1 subunit did not affect the sensitivity of the SERCA-ATPase activity to K+. Thus, the carboxy-terminal regions of both the SERCA1 and the Na+,K(+)-ATPase alpha 1 subunit are critical for K+ sensitivity. Analysis of additional (Ca2+/Na+,K+)-ATPase chimeras demonstrated that the carboxy-terminal 102 amino acids (Phe920-Tyr1021) of the Na+/K(+)-ATPase alpha 1 subunit are sufficient to shift the K+ affinity for activation of the SERCA-ATPase without the beta subunit. No change in the two-step activation of SERCA-ATPase by K+ was seen when residues Thr871-Thr898 of the SERCA1-ATPase were replaced with residues Asn894-Ala919 of the Na+,K(+)-ATPase alpha 1 subunit, a region known to bind the Na+,K(+)-ATPase beta subunit [Lemas, M. V., et al. (1994) J. Biol. Chem. 269, 8255-8259]. Thus, the Na+,K(+)-ATPase subunit-assembly domain and the K(+)-sensitive region are distinct within the carboxy-terminal 161 amino acids of the Na+,K(+)-ATPase.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources