Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Jan 17;40(2):242-9.
doi: 10.1021/jm960450v.

Coumarin-based inhibitors of HIV integrase

Affiliations

Coumarin-based inhibitors of HIV integrase

H Zhao et al. J Med Chem. .

Abstract

The structures of a large number of HIV-1 integrase inhibitors have in common two aryl units separated by a central linker. Frequently at least one of these aryl moieties must contain 1,2-dihydroxy substituents in order to exhibit high inhibitory potency. The ability of o-dihydroxy-containing species to undergo in situ oxidation to reactive quinones presents a potential limitation to the utility of such compounds. The recent report of tetrameric 4-hydroxycoumarin-derived inhibitor 5 provided a lead example of an inhibitor which does not contain the catechol moiety. Compound 5 represents a large, highly complex yet symmetrical molecule. It was the purpose of the present study to determine the critical components of 5 and if possible to simplify its structure while maintaining potency. In the present study, dissection of tetrameric 5 (IC50 = 1.5 microM) into its constituent parts showed that the minimum active pharmacophore consisted of a coumarin dimer containing an aryl substituent on the central linker methylene. However, in the simplest case in which the central linker aryl unit consisted of a phenyl ring (compound 8, IC50 = 43 microM), a significant reduction in potency resulted by removing two of the original four coumarin units. Replacement of this central phenyl ring by more extended aromatic systems having higher lipophilicity improved potency, as did the addition of 7-hydroxy substituents to the coumarin rings. Combining these latter two modifications resulted in compounds such as 3,3'-(2-naphthalenomethylene)bis[4,7-dihydroxycoumarin] (34, IC50 = 4.2 microM) which exhibited nearly the full potency of the parent tetramer 5 yet were structurally much simpler.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources