Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Dec 15;497 ( Pt 3)(Pt 3):699-709.
doi: 10.1113/jphysiol.1996.sp021801.

A transferable, beta-naphthoflavone-inducible, hyperpolarizing factor is synthesized by native and cultured porcine coronary endothelial cells

Affiliations

A transferable, beta-naphthoflavone-inducible, hyperpolarizing factor is synthesized by native and cultured porcine coronary endothelial cells

R Popp et al. J Physiol. .

Abstract

1. The vascular endothelium releases a hyperpolarizing factor (endothelium-derived hyperpolarizing factor, EDHF) tentatively identified as a cytochrome P450-derived arachidonic acid metabolite. However, there is still controversy concerning its transferability and identity. We designed a bioassay system for assessing EDHF release in which the membrane potential was recorded in cultured vascular smooth muscle cells located downstream from donor endothelial cells. 2. Under combined nitric oxide (NO) synthase and cyclo-oxygenase blockade with NG-nitro-L-arginine (100 mumol l-1) and diclofenac (10 mumol l-1), the superfusate from bradykinin (30 mumol l-1)-stimulated, cultured porcine coronary endothelial cells induced a distinct hyperpolarization followed by a depolarization. Direct application of bradykinin to the smooth muscle cells resulted solely in membrane depolarization. Similar results were obtained using bradykinin-stimulated porcine coronary arteries as donor. 3. Single-channel current measurements suggest that this EDHF-induced hyperpolarization was elicited by the activation of Ca(2+)-dependent K+ channels. 4. Increasing the transmural pressure within the donor segment significantly enhanced the duration, but not the amplitude of the hyperpolarization induced by the effluate from bradykinin-stimulated donor segments. 5. Inhibition of P450 oxygenase activity with clotrimazole (3 mumol l-1) or 17-octadecynoic acid (3 mumol l-1) abolished EDHF release from the coronary endothelium, while the P450-derived arachidonic acid metabolite, 5,6-epoxyeicosatrienoic acid, induced a hyperpolarization of detector smooth muscle cells almost identical to that induced by EDHF. Moreover, induction of P450 activity by beta-naphthoflavone (3 mumol l-1, 48 h), significantly increased the bradykinin-induced release of EDHF. 6. These findings suggest that the vascular endothelium releases a transferable hyperpolarizing factor, chemically distinct from NO and prostacyclin, in response to agonists and mechanical stimulation. This beta-naphthoflavone-inducible EDHF appears to be a cytochrome P450-derived metabolite of arachidonic acid, which elicits hyperpolarization by activation of Ca(2+)-dependent K+ channels.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Trends Pharmacol Sci. 1988 Aug;9(8):272-4 - PubMed
    1. Br J Pharmacol. 1988 Dec;95(4):1165-74 - PubMed
    1. J Physiol. 1990 Feb;421:521-34 - PubMed
    1. Blood Vessels. 1990;27(2-5):238-45 - PubMed
    1. Pflugers Arch. 1991 Mar;418(1-2):168-75 - PubMed

Publication types

MeSH terms

Substances

LinkOut - more resources