Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1996 Oct;10(10):633-9.

Central role of the kidney and abnormal fluid volume control in hypertension

Affiliations
  • PMID: 9004086
Review

Central role of the kidney and abnormal fluid volume control in hypertension

J E Hall et al. J Hum Hypertens. 1996 Oct.

Abstract

In human essential hypertension, and in all forms of experimental hypertension studied thus far, volume regulation and the relationship between blood pressure (BP) and sodium excretion (pressure natriuresis) are abnormal. Considerable evidence indicates that resetting of pressure natriuresis plays a key role in causing hypertension, rather than merely occurring as a consequence of increased BP. In patients with essential hypertension, resetting of pressure natriuresis is characterized either by a parallel shift to higher BPs and salt-insensitive hypertension, or by a decreased slope of pressure natriuresis and salt-sensitive hypertension. This clearly indicates that essential hypertension cannot be ascribed to a single abnormality of kidney function. Multiple physiological studies have shown that salt-sensitive hypertension can be elicited by renal abnormalities that cause either loss of functional kidney mass or an inability to modulate the renin-angiotensin-aldosterone (RAA) system appropriately; these abnormalities include loss of functional nephrons, decreased glomerular capillary filtration coefficient, patchy renal ischemia, and increased distal and collecting tubular reabsorption. Renal abnormalities that cause salt-insensitive hypertension are characterized by normal functional kidney mass, and the ability to appropriately modulate the renin-angiotensin system during changes in sodium intake; important causes of salt-insensitive hypertension include widespread increases in preglomerular resistance and increased reabsorption in the proximal tubules and loops of Henle. By comparing the characteristics of pressure natriuresis in essential hypertensive subjects with those found in experimental hypertension of known origin, we can gain considerable insight into the etiology of human hypertension.

PubMed Disclaimer

Publication types

LinkOut - more resources