The effects of dehydroepiandrosterone (DHEA) and its metabolites on the polycystic ovarian condition (PCO): cystogenic changes of rat granulosa cells in vitro
- PMID: 9004535
- DOI: 10.1016/s0040-8166(96)80071-1
The effects of dehydroepiandrosterone (DHEA) and its metabolites on the polycystic ovarian condition (PCO): cystogenic changes of rat granulosa cells in vitro
Abstract
During mammalian folliculogenesis, granulosa cells (GCs) are initially steroidogenically quiescent, later proliferate, and subsequently commence to hormonally differentiate, first producing estrogen and later, in the preovulatory stage, secreting both estrogen and progesterone. In this study and elsewhere, we have used follicle-stimulating hormone with a combination of growth factors in vitro to simulate the above in vivo conditions. In a previous study, we used dehydroepiandrosterone (DHEA) to accomplish the polycystic ovary condition (PCO) in rats. In the latter model, there were high circulating levels of DHEA and its metabolite, androstenedione. In the present study, we investigated the effects of high levels of DHEA (10(-5) M) and its metabolites, androstenedione, androstenediol and dehydroepiandrosterone sulfate on the quiescent, proliferative, and steroidogenically differentiating stages of GCs cultured in a serum-free medium for up to 10 days. In addition to possessing the regularly occurring organelles, when cultured with the aforementioned androgens, the GCs acquired endoplasmic reticulum of the smooth variety which is associated with steroidogenesis. The radioimmunoassay data showed that GCs cultured in the quiescent and proliferative stages in the presence of the androgens, no longer remain in these stages but proceed to differentiate in a preovulatory direction by producing both estrogen and progesterone. This study supports our hypothesis that high circulating levels of DHEA and/or its metabolites have most effect during the quiescent and proliferative stages of granulosa cells, with regard to their structure and their steroidogenic activities.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Medical