Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1996 Dec;10(6):1163-8.
doi: 10.1046/j.1365-313x.1996.10061163.x.

Gene identification in a complex chromosomal continuum by local genomic cross-referencing

Affiliations
Free article
Comparative Study

Gene identification in a complex chromosomal continuum by local genomic cross-referencing

Z Avramova et al. Plant J. 1996 Dec.
Free article

Abstract

Most higher plants have complex genomes containing large quantities of repetitive DNA interspersed with low-copy-number sequences. Many of these repetitive DNAs are mobile and have homology to RNAs in various cell types. This can make it difficult to identify the genes in a long chromosomal continuum. It was decided to use genic sequence conservation and grass genome co-linearity as tools for gene identification. A bacterial artificial chromosome (BAC) clone containing sorghum genomic DNA was selected using a maize Adh1 probe. The 165 kb sorghum BAC was tested for hybridization to a set of clones representing the contiguous 280 kb of DNA flanking maize Adh1. None of the repetitive maize DNAs hybridized, but most of the low-copy-number sequences did. A low-copy-number sequence that did cross-hybridize was found to be a gene, while one that did not was found to be a low-copy-number retrotransposon that was named Reina. Regions of cross-hybridization were co-linear between the two genomes, but closer together in the smaller sorghum genome. These results indicate that local genomic cross-referencing by hybridization of orthologous clones can be an efficient and rapid technique for gene identification and studies of genome organization.

PubMed Disclaimer

Publication types

Associated data

LinkOut - more resources