Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996 Feb 15;491 ( Pt 1)(Pt 1):241-59.
doi: 10.1113/jphysiol.1996.sp021212.

Inspiratory drive and phase duration during carotid chemoreceptor stimulation in the cat: medullary neurone correlations

Affiliations

Inspiratory drive and phase duration during carotid chemoreceptor stimulation in the cat: medullary neurone correlations

K F Morris et al. J Physiol. .

Abstract

1. This study addressed the hypothesis that there is a parallel processing of input from carotid chemoreceptors to brainstem neurones involved in inspiratory phase timing and control of inspiratory motor output amplitude. Data were from fifteen anaesthetized, bilaterally vagotomized, paralysed, artificially ventilated cats. Carotid chemoreceptors were stimulated by close arterial injection of 200 microliters of CO2-saturated saline solution. 2. Planar arrays of tungsten microelectrodes were used to monitor simultaneously up to twenty-two neurones in the nucleus tractus solitarii (NTS) and ventral respiratory group (VRG). Spike trains were analysed with two statistical tests of respiratory modulation, cycle-triggered histograms, peristimulus-time histograms, cumulative sum histograms and cross-correlograms. 3. In NTS, 16 of 26 neurones with respiratory and 12 of 27 without respiratory modulation changed firing rate during carotid chemoreceptor stimulation. In the VRG 72 of 112 respiratory and 14 of 48 non-respiratory neurones changed firing rate during stimulation. 4. The spike trains of 85 of 1276 pairs (6.7%) of cells exhibited short time scale correlations indicative of paucisynaptic interactions. Ten pairs of neurones were each composed of a rostral VRG phasic inspiratory neurone that responded to carotid chemoreceptor stimulation with a decline in firing rate and a caudal VRG phasic inspiratory neurone that increased its firing rate. Cross-correlograms from two of the pairs had features consistent with excitation of the caudal neurones by the rostral cells. A decrease in the duration of activity of the rostral VRG neurones was paralleled by the decrease in inspiratory time of phrenic nerve activity. Caudal VRG inspiratory neurones increased their activity as phrenic amplitude increased. Spike-triggered averages of all four neurones indicated post-spike facilitation of phrenic motoneurones. 5. The results support the hypothesis that unilateral stimulation of carotid chemoreceptors results in parallel actions. (a) Inhibition of rostral VRG I-Driver neurones decreases inspiratory duration. (b) Concurrent excitation of premotor VRG and dorsal respiratory group inspiratory neurones increases inspiratory drive to phrenic motoneurones. Other data suggest that responsive ipsilateral neurones act to regulate contralateral neurones.

PubMed Disclaimer

Similar articles

Cited by

References

    1. J Auton Nerv Syst. 1993 Mar;42(3):191-9 - PubMed
    1. Biol Cybern. 1994;70(4):311-27 - PubMed
    1. Biophys J. 1970 Sep;10(9):876-900 - PubMed
    1. J Neurophysiol. 1973 Mar;36(2):205-25 - PubMed
    1. Brain Res. 1974 Dec 6;81(2):319-24 - PubMed

Publication types

MeSH terms

LinkOut - more resources