Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1996;35(9-10):1299-305.
doi: 10.1016/s0028-3908(96)00067-6.

Isoniazid-induced inhibition of GABAergic transmission enhances neurosteroid content in the rat brain

Affiliations

Isoniazid-induced inhibition of GABAergic transmission enhances neurosteroid content in the rat brain

M L Barbaccia et al. Neuropharmacology. 1996.

Abstract

Isoniazid (375 mg/kg, s.c.), a drug that decreases GABAA receptor-mediated transmission, elicited a time-dependent increase of neuroactive steroid (pregnenolone, progesterone and allotetrahydrodeoxycorticosterone) concentrations in rat brain and plasma. This treatment also time-dependently increased the plasma concentration of corticosterone. Brain and plasma neuroactive steroid levels peaked between 40 and 120 min after isoniazid administration, respectively, and returned to control values by 5 hr. Acute foot shock stress mimicked the effect of isoniazid by increasing in a time-dependent manner the same neuroactive steroids both in brain and plasma. Abecarnil (0.3 mg/kg, i.p.), a beta-carboline derivative with anxiolytic properties, antagonized the effect of both isoniazid and foot shock on brain and plasma neuroactive steroids and on plasma corticosterone level. These data indicate that an inhibition of central GABAergic transmission enhances the concentrations of THDOC and its precursors pregnenolone and progesterone in the rat brain and plasma as well as the plasma levels of corticosterone. This finding suggests that GABA exerts a tonic inhibitory action on the mechanisms involved in the regulation of the synthesis and release of these neuroactive steroids in the central nervous system and plasma.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms