Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Jan;76(2):581-96.
doi: 10.1016/s0306-4522(96)00345-4.

Expression of agrin in the developing and adult rat brain

Affiliations
Free article

Expression of agrin in the developing and adult rat brain

N A Cohen et al. Neuroscience. 1997 Jan.
Free article

Abstract

Agrin, a synaptic basal lamina protein, is essential for the formation of the vertebrate neuromuscular junction. Agrin's role in synaptogenesis in the central nervous system has, however, not been elucidated. Therefore, we performed immunohistochemical analysis of agrin localization in adult rat brain using agrin-specific polyclonal antibodies. Our results show that agrin immunoreactivity is detected in neuronal cells throughout the brain, and that agrin is expressed in many morphologically and neurochemically distinct neuronal populations. Within neurons, agrin-immunoreactive material is present in dendrites. To determine agrin isoform expression in the central nervous system, we analysed the pattern of expression of several isoforms during development of the rat brain. Our results indicate that alternative splicing of agrin is specifically regulated in the nervous system; isoforms of the Y=4 (i.e. Ag x,4,0, Ag x,4,8 and Ag x,4,19), Z=8 and Z=19 type are expressed exclusively in the nervous system. Agrin expression precedes synaptogenesis and is developmentally regulated in neural tissues. To evaluate stimuli that may be involved in the regulation of agrin expression, we monitored the patterns of isoform expression following a depolarizing stimulus. Our results show that agrin expression in the adult hippocampus is regulated in an activity-dependent manner, with kinetics of induction resembling a delayed early response gene.

PubMed Disclaimer

Publication types

LinkOut - more resources