Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Feb 14;272(7):4245-51.
doi: 10.1074/jbc.272.7.4245.

The conformational change responsible for AT1 receptor activation is dependent upon two juxtaposed asparagine residues on transmembrane helices III and VII

Affiliations
Free article

The conformational change responsible for AT1 receptor activation is dependent upon two juxtaposed asparagine residues on transmembrane helices III and VII

A J Balmforth et al. J Biol Chem. .
Free article

Abstract

A model of the angiotensin AT1 receptor and site-directed mutagenesis were used to identify key residues involved in ligand binding. Receptors were stably expressed in human embryonic kidney 293 cells, and their binding properties compared. Wild type receptors exhibited low and high affinity binding sites for peptides. Substitution of Asn111, situated in the third transmembrane helix, resulted in a significant alteration in ligand binding with only high affinity binding of the peptides, angiotensin II, angiotensin III, and [p-amino-Phe6]angiotensin II and a marked loss in the binding affinity of the AT1 receptor selective non-peptide antagonist losartan. From our model it was apparent that Asn111 was in close spatial proximity to Asn295 in the seventh transmembrane helix. Substitution of Asn295, produced identical changes in the receptor's pharmacological profile. Furthermore, the Ser111AT1A and Ser295AT1A mutants did not require the association of a G-protein for high affinity agonist binding. Finally, the Ser295AT1A mutant maintained higher basal generation of inositol trisphosphate than the wild type, indicating constitutive activation. We propose that substitution of these residues causes the loss of an interaction between transmembrane helices III and VII, which allows the AT1 receptor to "relax" into its active conformation.

PubMed Disclaimer

Publication types

LinkOut - more resources