Evidence that nitric oxide increases glucose transport in skeletal muscle
- PMID: 9029239
- DOI: 10.1152/jappl.1997.82.1.359
Evidence that nitric oxide increases glucose transport in skeletal muscle
Abstract
Nitric oxide synthase (NOS) is expressed in skeletal muscle. However, the role of nitric oxide (NO) in glucose transport in this tissue remains unclear. To determine the role of NO in modulating glucose transport, 2-deoxyglucose (2-DG) transport was measured in rat extensor digitorum longus (EDL) muscles that were exposed to either a maximally stimulating concentration of insulin or to an electrical stimulation protocol, in the presence of NG-monomethyl-L-arginine, a NOS inhibitor. In addition, EDL preparations were exposed to sodium nitroprusside (SNP), an NO donor, in the presence of submaximal and maximally stimulating concentrations of insulin. NOS inhibition reduced both basal and exercise-enhanced 2-DG transport but had no effect on insulin-stimulated 2-DG transport. Furthermore, SNP increased 2-DG transport in a dose-responsive manner. The effects of SNP and insulin on 2-DG transport were additive when insulin was present in physiological but not in pharmacological concentrations. Chronic treadmill training increased protein expression of both type I and type III NOS in soleus muscle homogenates. Our results suggest that NO may be a potential mediator of exercise-induced glucose transport.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
