Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Mar;17(3):1731-43.
doi: 10.1128/MCB.17.3.1731.

Serum response factor and protein-mediated DNA bending contribute to transcription of the dystrophin muscle-specific promoter

Affiliations

Serum response factor and protein-mediated DNA bending contribute to transcription of the dystrophin muscle-specific promoter

F Galvagni et al. Mol Cell Biol. 1997 Mar.

Abstract

The minimal muscle-specific dystrophin promoter contains the consensus sequence CC(A/T)6GG, or the CArG element, which can be found in serum-inducible or muscle-specific promoters. The serum response factor (SRF), which mediates the transcriptional activation of the c-fos gene in response to serum stimulation, can bind to different CArG box elements, suggesting that it could be involved in muscle-constitutive transcription. Here we show that SRF binds to the dystrophin promoter and regulates its muscle-specific transcription. In transient transfections, an altered-binding-specificity SRF mutant restores the muscle-constitutive transcription of a dystrophin promoter with a mutation in its CArG box element. The muscle-constitutive transcription of the dystrophin promoter also requires the sequence GAAACC immediately downstream of the CArG box. This sequence is recognized by a novel DNA bending factor which was named dystrophin promoter-bending factor (DPBF). Mutations of the CArG flanking sequence abolish both DPBF binding and the promoter activity in muscle cells. Its replacement with a p62/ternary complex factor binding site changes the promoter specificity from muscle constitutive to serum responsive. These results show that, on the dystrophin promoter, the transcriptional activation induced by SRF requires the DNA bending induced by DPBF. The bending, next to the CArG box, could promote interactions between SRF and other proteins in the transcriptional complex.

PubMed Disclaimer

References

    1. J Virol. 1989 Mar;63(3):1435-40 - PubMed
    1. Genes Dev. 1990 Oct;4(10):1811-22 - PubMed
    1. Cell. 1993 Apr 23;73(2):395-406 - PubMed
    1. Science. 1990 Nov 16;250(4983):931-6 - PubMed
    1. Proc Natl Acad Sci U S A. 1991 Feb 15;88(4):1276-80 - PubMed

Publication types

MeSH terms

Grants and funding

LinkOut - more resources