Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Jan 23;746(1-2):63-70.
doi: 10.1016/s0006-8993(96)01186-9.

Insulin-like growth factors and insulin stimulate erythropoietin production in primary cultured astrocytes

Affiliations

Insulin-like growth factors and insulin stimulate erythropoietin production in primary cultured astrocytes

S Masuda et al. Brain Res. .

Abstract

Erythropoietin (EPO) is established as a major regulator of erythropoiesis. However, we and others have shown that neurons express erythropoietin receptor (EPO-R), that astrocytes produce EPO and that EPO may act as a neurotrophic factor in the CNS. We also found that EPO production is activated by insulin and insulin-like growth factors (IGFs) in astrocytes in a dose-dependent manner and that IGF-I was the most potent activator. The concentrations required for half-maximal activation were 3 nM IGF-I, 10 nM IGF-II and 100 nM insulin. The oxygen concentration regulates EPO production; hypoxia stimulates EPO production in astrocytes. The stimulatory effect of IGFs and insulin on EPO production in astrocytes was not affected by the oxygen concentration of astrocyte culture. Insulin and IGFs did not increase the total protein synthesis of astrocytes but increased EPO mRNA levels, indicating that EPO production is stimulated at the mRNA level. It appeared that the growth factor-induced accumulation of EPO mRNA in astrocytes was caused by activation of the tyrosine kinase-signal transduction pathway, because tyrosine phosphorylation of receptors for IGF-I and insulin was activated when astrocytes were stimulated by these growth factors.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources