Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Feb 28;272(9):5445-51.
doi: 10.1074/jbc.272.9.5445.

Side reactions catalyzed by ribulose-bisphosphate carboxylase in the presence and absence of small subunits

Affiliations
Free article

Side reactions catalyzed by ribulose-bisphosphate carboxylase in the presence and absence of small subunits

M K Morell et al. J Biol Chem. .
Free article

Abstract

The large subunit core of ribulose-bisphosphate carboxylase from Synechococcus PCC 6301 expressed in Escherichia coli in the absence of its small subunits retains a trace of carboxylase activity (about 1% of the kcat of the holoenzyme) (Andrews, T. J (1988) J. Biol. Chem. 263, 12213-12219). During steady-state catalysis at substrate saturation, this residual activity diverted approximately 10% of the reaction flux to 1-deoxy-D-glycero-2,3-pentodiulose-5-phosphate as a result of beta elimination of inorganic phosphate from the first reaction intermediate, the 2,3-enediol form of ribulose bisphosphate. This indicates that the active site's ability to stabilize and/or retain this intermediate is compromised by the absence of small subunits. Epimerization and isomerization of the substrate resulting from misprotonation of the enediol intermediate were not significantly exacerbated by lack of small subunits. The residual carboxylating activity partitioned product between pyruvate and 3-phosphoglycerate in a ratio similar to that of the holoenzyme, indicating that stablization of the penultimate three-carbon aci-acid intermediate is not perturbed by lack of small subunits. The underlying instability of the five-carbon enediol intermediate was revealed, even with the holoenzyme, under conditions designed to lead to exhaustion of substrate CO2 (and O2). When carboxylation (and oxygenation) stalled upon exhaustion of gaseous substrate, both spinach and Synechococcus holoenzymes continued slowly to beta eliminate inorganic phosphate from and to misprotonate the enediol intermediate. With carboxylation and oxygenation blocked, the products of these side reactions of the enediol intermediate accumulated to readily detectable levels, illustrating the difficulties attendant upon ribulose-P2 carboxylase's use of this reactive species as a catalytic intermediate.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources