Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1997 Feb;72(2):137-41.
doi: 10.1016/s0165-5728(96)00184-1.

TNF-alpha transgenic and knockout models of CNS inflammation and degeneration

Affiliations
Review

TNF-alpha transgenic and knockout models of CNS inflammation and degeneration

L Probert et al. J Neuroimmunol. 1997 Feb.

Abstract

Tumour necrosis factor-alpha (TNF-alpha) plays a central role in inflammatory events including those taking place in the central nervous system (CNS), and has been implicated as a key pathogenic mediator in several human inflammatory, infectious and autoimmune CNS disorders. Using transgenic and gene knockout mice we have investigated the role of deregulated TNF-alpha production in the CNS. We show that the overexpression of wild-type murine or human TNF-alpha transgenes by resident CNS astrocytes or neurons in sufficient to trigger a neurological disorder characterised by ataxia, seizures and paresis, with histopathological features of chronic CNS inflammation and white matter degeneration. Furthermore, we show that transmembrane human TNF-alpha is sufficient to trigger CNS inflammation and degeneration when overexpressed by astrocytes but not by neurons, indicating that target cells mediating the neuroinflammatory activities of TNF-alpha localise in the vicinity of astrocytes rather than neurons. Our results establish that both soluble and transmembrane molecular forms of TNF-alpha can play critical roles in vivo in the pathogenesis of CNS inflammation and demyelination, and validate TNF-alpha transgenic and mutant mice as important models for the further study of related human CNS diseases.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources