Estimating the completeness of prevalence based on cancer registry data
- PMID: 9044530
- DOI: 10.1002/(sici)1097-0258(19970228)16:4<425::aid-sim414>3.0.co;2-z
Estimating the completeness of prevalence based on cancer registry data
Abstract
Prevalence data provided by cancer registries are generally biased, since the patients that were diagnosed before the starting of the registry's activity cannot be included in the statistics. The relevance of this incompleteness bias is estimated in this paper. Incidence and relative survival are modelled as parametric functions describing a wide class of cancer diseases. Prevalence estimates are then computed considering different hypotheses on disease reversibility. The ratio between the prevalence observed by the registry and the total estimated prevalence is used as an index of completeness. An analytical evaluation of this ratio, as a function of the parameters characterizing the observational process and the biological behaviour of the disease, is given.
Similar articles
-
Italian cancer figures--Report 2015: The burden of rare cancers in Italy.Epidemiol Prev. 2016 Jan-Feb;40(1 Suppl 2):1-120. doi: 10.19191/EP16.1S2.P001.035. Epidemiol Prev. 2016. PMID: 26951748
-
Cancer prevalence estimates based on tumour registry data in the Surveillance, Epidemiology, and End Results (SEER) Program.Int J Epidemiol. 2000 Apr;29(2):197-207. doi: 10.1093/ije/29.2.197. Int J Epidemiol. 2000. PMID: 10817114
-
Correcting the completeness bias of observed prevalence.Tumori. 1999 Sep-Oct;85(5):370-81. doi: 10.1177/030089169908500503. Tumori. 1999. PMID: 10665853
-
Measuring cancer prevalence in Europe: the EUROPREVAL project.Ann Oncol. 2002 Jun;13(6):831-9. doi: 10.1093/annonc/mdf152. Ann Oncol. 2002. PMID: 12123329 Review.
-
Evaluation of data quality in the cancer registry: principles and methods Part II. Completeness.Eur J Cancer. 2009 Mar;45(5):756-64. doi: 10.1016/j.ejca.2008.11.033. Epub 2009 Jan 6. Eur J Cancer. 2009. PMID: 19128954 Review.
Cited by
-
Estimating the prevalence of hematological malignancies and precursor conditions using data from Haematological Malignancy Research Network (HMRN).Cancer Causes Control. 2016 Aug;27(8):1019-26. doi: 10.1007/s10552-016-0780-z. Epub 2016 Jun 28. Cancer Causes Control. 2016. PMID: 27351920 Free PMC article.
-
Estimating the number of colorectal cancer patients treated with anti-tumour therapy in 2015: the analysis of the Czech National Cancer Registry.BMC Public Health. 2012 Feb 10;12:117. doi: 10.1186/1471-2458-12-117. BMC Public Health. 2012. PMID: 22325812 Free PMC article.
-
Projecting cancer prevalence by phase of care: a methodological approach for health service planning.Front Oncol. 2023 Aug 30;13:1201464. doi: 10.3389/fonc.2023.1201464. eCollection 2023. Front Oncol. 2023. PMID: 37711195 Free PMC article.
-
Getting cancer prevalence right: using state cancer registry data to estimate cancer survivors.Cancer Causes Control. 2011 May;22(5):765-73. doi: 10.1007/s10552-011-9749-0. Epub 2011 Mar 1. Cancer Causes Control. 2011. PMID: 21360046 Free PMC article.
-
Long-term survival, prevalence, and cure of cancer: a population-based estimation for 818 902 Italian patients and 26 cancer types.Ann Oncol. 2014 Nov;25(11):2251-2260. doi: 10.1093/annonc/mdu383. Epub 2014 Aug 22. Ann Oncol. 2014. PMID: 25149707 Free PMC article.