Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1997 Feb 7;265(5):553-64.
doi: 10.1006/jmbi.1996.0757.

Motor domains of kinesin and ncd interact with microtubule protofilaments with the same binding geometry

Affiliations
Comparative Study

Motor domains of kinesin and ncd interact with microtubule protofilaments with the same binding geometry

A Hoenger et al. J Mol Biol. .

Abstract

Kinesin and ncd (non-claret disjunctional) are microtubule associated motor proteins which share several structural features: both motors are dimers; each monomer is composed of a stalk region, a cargo binding domain and a motor domain; the motor domains have approximately 41% sequence identity. Despite these similarities the two motors have strikingly different movement properties: kinesin is a plus-end directed molecular motor, while ncd is minus-end directed. Here we compare the structure and the microtubule-binding properties of these oppositely directed molecular motors. We determined the three-dimensional structure of tubulin sheets decorated with the motor domains of either kinesin or ncd to a resolution of < 20 A by negative stain electron microscopy and tilt series reconstruction. Comparisons with a control structure of tubulin alone revealed that in both cases the motor domain binds to the outer crest of a single protofilament making contacts with both alpha and beta tubulin. Despite their opposite directionality, the geometry of attachment of the motor domain to the protofilament in the presence of AMP-PNP is very similar for both motors. These data rule out models for directionality which have the motors binding in an opposite orientation to the microtubules. Binding of the ncd as well as the kinesin motor domain appears to induce conformational changes in tubulin. This observation suggests an active role of tubulin in motor movement and/or in the determination of directionality.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources