Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1997 Jan;200(Pt 2):217-24.
doi: 10.1242/jeb.200.2.217.

Coupling H+ transport and ATP synthesis in F1F0-ATP synthases: glimpses of interacting parts in a dynamic molecular machine

Affiliations
Review

Coupling H+ transport and ATP synthesis in F1F0-ATP synthases: glimpses of interacting parts in a dynamic molecular machine

R H Fillingame. J Exp Biol. 1997 Jan.

Abstract

Reversible, F1F0-type ATPases (also termed F-ATP synthases) catalyze the synthesis of ATP during oxidative phosphorylation. In animal cells, the enzyme traverses the inner mitochondrial membrane and uses the energy of an H+ electrochemical gradient, generated by electron transport, in coupling H+ translocation to ATP formation. Closely related enzymes are found in the plasma membrane of bacteria such as Escherichia coli, where the enzymes function reversibly depending upon nutritional circumstance. The F1F0-type enzymes are more distantly related to a second family of H(+)-translocating ATPases, the vacuolar-type or V-ATPases. Recent structural information has provided important hints as to how these enzymes couple H+ transport to the chemical work of ATP synthesis. The simplest F1F0-type enzymes, e.g. as in E. coli, are composed of eight types of subunits in an unusual stoichiometry of alpha 3 beta 3 gamma delta epsilon (F1) and a1b2c12 (F0). F1 extends from the membrane, with the alpha and beta subunits alternating around a central subunit gamma. ATP synthesis occurs alternately in different beta subunits, the cooperative tight binding of ADP + Pi at one catalytic site being coupled to ATP release at a second. The differences in binding affinities appear to be caused by rotation of the gamma subunit in the center of the alpha 3 beta 3 hexamer. The gamma subunit traverses a 4.5 nm stalk connecting the catalytic subunits to the membrane-traversing F0 sector. Subunit c is the H(+)-translocating subunit of F0. Protonation/deprotonation of Asp61 in the center of the membrane is coupled to structural changes in an extramembranous loop of subunit c which interacts with both the gamma and epsilon subunits. Subunits gamma and epsilon appear to move from one subunit c to another as ATP is synthesized. The torque of such movement is proposed to cause the rotation of gamma within the alpha 3 beta 3 complex. Four protons are translocated for each ATP synthesized. The movement of gamma and epsilon therefore probably involves a unit of four c subunits. The organization of subunits in F0 remains a mystery; it will have to be understood if we are to understand the mechanism of torque generation.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources