Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1997 Mar;86(3):283-9.
doi: 10.1021/js960429h.

In vitro and in vivo effects of tetrakisphosphonates on bone resorption, tumor osteolysis, ectopic calcification, and macrophages

Affiliations
Comparative Study

In vitro and in vivo effects of tetrakisphosphonates on bone resorption, tumor osteolysis, ectopic calcification, and macrophages

J M Van Gelder et al. J Pharm Sci. 1997 Mar.

Abstract

The biological effects of bisphosphonates in calcium-related disorders are attributed to the incorporation of the bisphosphonates in bone, enabling direct interaction with osteoclasts and/or osteoblasts. The high accumulation of bisphosphonates in bone, due to their high affinity to hydroxyapatite (HAP), is essential for mediating in vitro and in vivo activity. In this study we examined the activity of tetrakisphosphonates, molecules containing two P-C-P type bisphosphonate moieties connected by a carbon chain. The novel compounds were examined in a battery of in vitro and in vivo models including HAP formation and dissolution, ectopic calcification, bone resorption, tumor osteolysis, and of macrophage-like cells (anti- or pro-inflammatory properties). The inhibition of ectopic calcification was ranked as follows: geminal bisphosphonates > bisacylphosphonates > tetrakisphosphonates. Pamidronate, but not the tetrakisphosphonates, was an effective antiosteolytic agent. Neither DNTP (tetrasodium 1,9-dihydroxynonane 1,1,9,9-tetrakisphosphonate) nor the bisacylphosphonate, PiBP (pimeloylbisphosphonate) seem to possess strong macrophage suppressive or inductive effects and can be considered to be relatively inactive in terms of anti- or pro-inflammatory action. A significant anticalcification effect was caused by various phosphonates, such as the tetrakisphosphonates, but DNTP, a tetrakisphosphonate, was found toxic as it impeded somatic growth and bone development.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources