Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Mar 14;272(11):7048-54.
doi: 10.1074/jbc.272.11.7048.

Identification and characterization of a novel plant phospholipase D that requires polyphosphoinositides and submicromolar calcium for activity in Arabidopsis

Affiliations
Free article

Identification and characterization of a novel plant phospholipase D that requires polyphosphoinositides and submicromolar calcium for activity in Arabidopsis

K Pappan et al. J Biol Chem. .
Free article

Abstract

Phospholipase D (PLD; EC 3.1.4.4) has been proposed to be involved in a number of cellular processes including transmembrane signaling and membrane deterioration. PLD previously described from various plant sources generally requires millimolar ranges of calcium for optimal activity. In this study, we genetically suppressed the expression of this conventional PLD in Arabidopsis by introducing an antisense PLD cDNA. However, both the antisense transgenic and wild-type plants showed comparable PLD activity in the presence of submicromolar concentrations of calcium and phosphatidylinositol 4, 5-bisphosphate using phosphatidylcholine as a substrate. This new PLD activity was partially stimulated by phosphatidylinositol 4-phosphate, but not by other phospholipids, including phosphatidylinositol, phosphatidylserine, phosphatidylglycerol, phosphatidic acid, or phosphatidylcholine. Its requirement for polyphosphoinositides was further supported by its ability to be inhibited by neomycin. The polyphosphoinositide-dependent PLD requires calcium for activity, but no magnesium. The calcium stimulation was observed in the nanomolar range and reached a plateau at 5 microM calcium. The findings of this study demonstrate the presence of different PLDs that are regulated in a distinct manner in plants. The potential significance of a PLD that is regulated by polyphosphoinositides and physiological concentrations of Ca2+ is discussed.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources