Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Mar 4;95(5):1115-8.
doi: 10.1161/01.cir.95.5.1115.

Role of bradykinin in mediating vascular effects of angiotensin-converting enzyme inhibitors in humans

Affiliations

Role of bradykinin in mediating vascular effects of angiotensin-converting enzyme inhibitors in humans

B Hornig et al. Circulation. .

Abstract

Background: The angiotensin-converting enzyme (ACE) not only generates angiotensin II but is also the main enzyme that destroys bradykinin. It has been hypothesized, therefore, that bradykinin is involved in the vascular effects of ACE inhibitors. However, its contribution has never been demonstrated in humans because of the lack of specific bradykinin receptor antagonists.

Methods and results: High-resolution ultrasound and Doppler were used to measure radial artery diameter and blood flow in 10 healthy volunteers. The vascular effects of the ACE inhibitor quinaprilat, the selective bradykinin B2-receptor antagonist icatibant, and their combination were determined at rest, during reactive hyperemia (with increased flow causing endothelium-mediated, flow-dependent dilation), and during sodium nitroprusside, causing endothelium-independent dilation. Neither icatibant nor quinaprilat affected arterial diameter or blood flow at rest. However, icatibant reduced flow-dependent dilation by 33%, and quinaprilat increased flow-dependent dilation over baseline by 46%. After coinfusion of quinaprilat and icatibant, flow-dependent dilation was reduced to a similar extent as after infusion of icatibant alone.

Conclusions: ACE inhibition enhances flow-dependent, endothelium-mediated dilation in humans by a bradykinin-dependent mechanism. This observation indicates that accumulation of endogenous bradykinin is involved in the vascular effects of ACE inhibitors in humans.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources